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The previous theory is extended to the case of an asymmetrical potential of the main body especially in 
the case of small eccentricity by assuming that J,, the coefficient of the nth-order zonal harmonics of the 
potential, is of nth order of magnitude and the eccentricity is of the first order of magnitude. Here there is 
a peculiar kind of libration which never occurs in the case of moderate eccentricity. This peculiar kind of 
libration splits into two kinds of libration, depending either on the antisymmetrical term prevailing case 
or on the symmetrical term prevailing case, which is a continuous transformation of the type described in the 
previous theory. Numerical test discloses that for the earth the former peculiar kind of libration occurs. Also 
it is shown that the fifth coefficient is comparatively large and plays an important role in the asymmetrical 
theory for the case of small eccentricity. The present paper shows that the antisymmetrical terms cannot 
be neglected for the earth in the case of small eccentricity. 
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I. INTRODUCTION 

T N  the previous paper by the same author (1962) the - iiioiioii of a close saieiiite in the vicinity of the 
so-called critical inclination was studied. However, in 
that paper the author omitted the effect of the anti- 
symmetrical terms in the potential of the main bodies. 
The theory including these terms was given, for 
example, by Kozai (1961). However, in spite of his 
comment on the case of small eccentricity, it does not 
seem very extensive. 

Therefore, the author has decided to develop a theory 
to avoid the difficulty connected with small eccentricity. 
A preliminary consideration shows that this difficulty 
arises only in the vicinity of e=O, and that there is no 
trajectory in general extending from the vicinity of 
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t Present address: Tokyo Astronomical Observatory, Mitaka, 
Tokyo, Japan. 

e=O to a value of the order of unity. Keeping this 
in mind, the author has expanded the Hamiltonian 
into a power series in e ,  which is assumed to be of the 
first order of magnitude, assuming that J,, the co- 
efficient of zonal harmonics of nth order, is of the nth 
order of magnitude, and that the deviation given by 
the following formula is assumed to be of the second 
order : 

CY = 1 - 5H2 (puo)-l, (1.1) 

where H ,  a constant, is the projected angular momentum 
to the equatorial plane, and uo the mean semimajor axis. 

The necessary terms up to the sixth order of magni- 
tude in this respect are picked up from the Hamiltonian 
F*, which is given by removing the so-called periodic 
perturbation terms. The terms lower than the sixth 
=:de: are a!! cmstant, therefcre the s ix th -de r  terms 
are considered as the leading terms in our theory. 

The author found that the equation of motion can 
be reduced to the same type as the ones given by 
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Andoyer (1903) : 

dh d F  dk d P  
(1.2) - _- _ _  __--  

dr dit’ d r  dk’ 

where 

F= -ph+ (r+@’)lz’+ (r-p’)k”+ (~Z~+/Z’)~ ,  (1.3) 

with a different restriction on the sign of p’ than that 
given by Andoyer. 

He assumed a restriction such as p’>O, which is 
always confirmed in his theory connected with the 
librational problem of asteroids. In  our theory, how- 
ever, this restriction should be removed ; namely, in 
some cases we have p‘<0 as well as /3’>0. Especially 
in the case of the earth, 8’ is negative. Therefore, some 
change from his theory must take place. This slight 
change might easily be overlooked, but as seen later in 
this paper, some alterations are required afterwards, 
if we want to have real expressions for the solutions. 

The main purpose of this paper is to develop the 
theory with this difference in mind, and exclusively to 
give the case for @‘<O. Section I1 presents a prelimin- 
ary discussion on obtaining the equations of motion in 
Andoyer’s form. Section 111 is the same as that of his 
theory ; however, in order to avoid some confusion the 
present author rewrites the results in a very compact 
form. In Sec. IV some changes from his own appear in 
separating the several cases connected with the relation 
between the quantities y*=y/@t and B*‘= /3’//3$. 
Section V gives a classification under which the solu- 
tions connected with the quantity u*=u/p$, where u is 
the energy constant of the system, should be written 
down separately. Section VI  gives the whole expressions 
of the solutions in the real number representation. 
Section VI1 is an Appendix which gives the char- 
acteristics, which means the trajectory within the plane 
of e cosg and e sing without any attention to the relation 
with the time, the independent variable. Several per- 
tinent numerical results are given. Section VI11 gives 
some discussions related with the convergency, the 
relation to the previous theory and so forth. Finally 
Sec. IX gives the conclusion. 

In order to test the assumption imposed on J,, the 
quantities for the earth are listed below-not only in 
actual values but also in units of proper powers of 
a@=0.0528, which is assumed to be of the first order 
of magnitude : 

J z =  1082.36X lop6= 0.3882 /3*/’~$, 
J3= - 2.566X l O W =  -0.0174 p34zO3, 
Jq=-2.14 XlOP= -0.275 p4/3~04, 

JE= -0.063X10-6= -0.154 @5/ra0s.  

Roughly speaking, these numerical values show that 
JZ, J I ,  and Jg play approximately the same order of 

role in the vicinity of e=0, say e=0.10 or 0.05; on the 
other hand, J 3  does not take any important role here. 

11. EQUATIONS OF MOTION 

The potential, under which influence a negligible 
small mass particle moves, is assumed in the following 
form : 

V=- ”[ 1-C J ,  (;yL - P,(sin6) ] , (2.1) 
r 

where p=Mk2,  k being the Gaussian constant and M 
the mass of the main body, r is the distance of the 
particle from the center of the main body, 6 is the 
declination of the particle, J ,  represent numerical 
constants which characterize the spheroidal potential ; 
in this paper the summation extends from 2 to 5, as 
seen later. 

Using a result of the so-called secular and long 
periodic parts in the original Hamiltonian such as 
given by Kozai (1962a), we may pick up only the 
following necessary parts provided that J ,  is assumed 
to be of the nth order of magnitude as well as the 
eccentricity e to be of the first order : 

3 p4J2 21pGJ4 3 p6J2‘ 

16 L6 40 L‘O 40 L’O 

3 p6J4 3 ”‘J3 

40 L‘O 4(S)  LE 

+---- e sing+- ~ e sing, 

F*=- -(ez-a)2+- -e2-- -e2 cos2g 

e2 cos2g+- ---e(ez-a) sing 

3 P’JzJ3 9 p7J5 

4(9 )  L’2 10(5*) L’2 
(2.2) 

where a= 1- SH’(pa&’= a constant which is assumed 
to be of the second order, and the other notations 
correspond to Delaunay’s. In  this expression, the terms 
of belond the sixth order of magnitude are neglected. 
As the Hamiltonian has only sixth order of magnitude 
and nothing else, neglecting the higher orders, we may 
take and 1) as the canonical variables, 

L*e sing = E ,  L+e cosg = q, 

in the canonical equations of motion : 

aF* aq aF* 

at a? ’ dt a t  ‘ (2.3) - - -__ - - 

For mathematical simplicity, if the canonical 
variables and the independent variable are changed : 

k = e  COS^, 

3 p4J2 3 p*Jz 
7=--t=---t 

16 L7 16 a07/2 ’ 

hl= e sing, 
(2.4) 
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then the equations of motion will be 

dhl aP1 dk aP1 

dr  a k ’  dr ah1’ 
(2.5) _- _- _= _- 

where by neglecting an unnecessary constant in F*, 

16 L6 
P1=- -(F*-const) 

3 p4J2 

with 

(2.7) 

‘ In  order to remove the third-degree terms in hl and k ,  
121 is changed to h given by 

h = hi+ $pi”. (2.8) 
Further, if the equations are transformed in terms of 

(2.9) 
P and Y, 

p = h + i k ,  q=h--ik, 

the equations can be written as follows : 

with 

where 

2 J32 18 J3’ 16 J32J4 p - p , =  ---cy- 

5 J22a02 25 J2a04 25 J23a04 

24 JJ5 3 J P  +--+--- - const. 
25 J22a04 25 J t a o 4  

(2.12) 

The form of the Hamiltonian (2.11) shows that it is 
the quadratic in p or q, respectively; this was the 
technique which Andoyer (1903) used for the problem 
associated with the libration near the commensurability 
between the mean motion of asteroids and that of the 
disturbing body, Jupiter. Therefore, we can follow 
after his development in order to solve the equation of 
motion. Nevertheless, there is a slight difference be- 
tween his case and ours concerning the sign of some 
coefficient. He assumed that the coefficient p’ is always 
positive; but in our case p’ can take a negative value 
as well as a positive one depending on the interrelation 
of the magnitude of Jn%. Especially for the earth it is 
negative, as seen later. Therefore, we are restricted to 
take the negative p’ case here unless otherwise men- 
tioned, because for the positive case Andoyer’s results 
are available. 

111. GENERAL EXPRESSION OF SOLUTION 

The general form of the solutions does not change 
from Andoyer’s results. But, in order to avoid some 
confusion about the real/complex criterion, we shall 
make a slight change in the notation. The calculations 
are omitted and only the results obtained are given here. 

The solutions of Eqs. (2.10) are given in the following 
form : 

I 
1 

p =  -[s(r+X++P-3X>-r(r+x- 4p- 4x) 
i (ao’)’ 

II i s  the  energy constant such that 
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p(z) is the Weierstrassian elliptic function with the 
parameters 

gz= -uo1aq- lu1a,+3a?, (3.5) 
g3= 2 ~ ~ ~ 2 ~ 3 -  a(a2u4- a?u*+ug)a+ aP, 

such that 

[p’(z>l’= 4@ (4 -g2p(z) -ga, (3.6) 
where @’(e) denotes the derivative respective to z. 
{(z) is the associated zeta function defined by 

I n  the expression of solution (3.1) X is an integration 
constant, which with the energy constant u forms a 
system of the arbitrary constants in the solution of the 
equations of motion. u is of course a real value; is, 
however, not necessarily real. X should be taken such 
that the expression (3.1) could give real values of h 
and k, - 

1 

2i 
h = a (p+ y), = - ( p  - Y). (2.9‘) 

IV. DISCRIMIPiATIOii AMOKG SEVERAL CASES 

At the first step it is necessary to know the sign of 
the discriminant A, 

A = g*a- 27g3’. (4.1) 
For brevity, let 

P =  p ( x )  E 5 ( 4 ~ -  y2+ 6@’7 - .5j3l2), 

and (4.2) 
Q=@’(x)/i= 16~@’-4@’(p‘-ry)~-2p~, 

which are also real values even for our case, then 

g2= 12P?-4(7-2@’)Q, 

and (4.3) 
g,= -8P3+Q2+4(y- 2P’)PQ. 

I t  follows accordingly that 

+ ~ r + m r + a 7 3 + 9 ~ 1 u  

For brevity, let 

and so forth, then 

1 27 --[ 64 (r.+P*’)3+-]]. 4 (4.1”) 

If the subscript * is omitted in this expression, then 
ever!; term remains the same as in (4.1’) except for /3 
which is replaced by unity ; besides, as is easily seen, 
/3 is of the third order of magnitude, and we may choose 

h* = h/@, k* = k/P’ . (4.4’) 

As a result, all quantities are measured in units of 
proper powers of 84, which is assumed to be of the first 
order of magnitude, provided that @ # O .  Therefore 
without any restriction we may take ,8= 1 hereafter 
unless otherwise stated. This is an application of the 
nondimensional analysis. 

I n  any way, there are two cases for A=O: 

(9  Q=O.  (4.5) 

If we consider (4.5) as an equation for u, then we 
know the value uo which satisfies this equation: 

uo = 9 (p’-y)Z+&y-l (4.6) ’ 

64 

Here two cases again are divided according to the sign 
of the discriminant A’ of f(u) itself: 

namely, if 

then among the three roots u1, 242, 243 of Eq. (4.7) in 
terms of u, two of them have complex values, while 
the other, say UI, remains real. On the other hand, if 

r+B’<-3, (4.10) 

r+B’> -4, (4.9) 

then the three roots are all real, 

u3<uz<u1. 

Now, it is necessary to know in what sequence the 
roots ui(i=0,1,2,3) appear; in other words, to know 
the relation between uo and u;(i= 1,2,3)(A’>O) or 
ul(A’<O). In the case when (4.9) occurs we can easily 

CASE F 
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determine it in the following way: first of all we have 

f (u)zO,  if and only if u$ul; (A) 
however, since 

9 
(4.11) 

where Yo denotes the value of Y when u=uo, we have, 
if @’>O,  the right-hand side of (4.11) is always pqsltive, 
but if @‘<O, this is not always true. Consequently, we 
have a new discrimination, which never occurs in the 
case when fir> 0 : 

if -y2+$p’-150 then uo5iul. (B) 
On the other hand, in the case when (4.10) is satisfied, 
we may only say that 

if yz++/3-1<0, then u ~ < u o < u ~ ,  

or UO<u3; ( c )  
and if y2+&3-’>0, then Ul<UO,  

or u3<u~<uz.  

The detailed criterion will be given in a later part. 
At the second step it is necessary to divide the cases 

according to the sign of (g3); (i=0,1,2,3), where (g3), 
denotes the value of g3 when u=u;. This is important 
because, for example, if (gs)i<o then the energy con- 
stant u,  corresponds to the unstable equilibrium 
point(s). It is easily confirmed for (g3)o, since 

512 

27 
(g3)0= --Po3= --p”((~-/3‘+&p’-~)~; (4.12) 

when @ ’ < O ,  

if y-/3’+$’-2><0, then (g3)0><0. (D) 

In order to know the relation between uo and ui 
(i= 1,2,3) in more detail as well as the sign of (g3); it is 
convenient to divide the y vs @’ plane into severa! 
parts so that in each of them the situation never 
changes. For this purpose, it is sufficient to draw lines 
where the situation would change. The following four 
lines serve this purpose : 

y+p’= - 3 2 ,  (4.13) 

y+ (- 2 p y  = 0, (4.14) 

y- (-2p’)-+=O, (4.14’) 

and 
y-@’+B (/3’)-’= 0. (4.15) 

I n  effect, uo=ui occurs only on the lines (4.14) or 
(4.14’); 2il=zi? or u ~ = u : ,  onij. on the line (4.13); and 

either (4.14), (4.14’) or (4.13), as is easily confirmed. 
(g3 )0=O Olll!~ 011 ( 4 . q  (g,)i=o ( i f O )  occ11rs 011 

Before dividing the plane b!. the four lines given 

above, for the sake of simplicity let us consider the 
division by separating the negative p’ half-plane into 
three parts : 

Case I. P ‘ < - 2 ;  

- f i t -$> + (-2fi’)-i> - (- 2@’)-”>p’ 

in this case we have 

- (/3’)--?. (4.16) 

Case 11. - 2 <8‘ < -4, 
(-2P’)-4> -pr-q> - (-2B’)-i>@’ 

Case 111. -+<fI‘<O, 

(-2$)-i>-B’-$>- (-2@’)-i>p’ 

- ; ( B y .  (4.1 7) 

- g (P’)-’* (4.18) 

The reason why we make a discrimination between 
case I1 and case I11 is that 

if PI=-+ 
then 

-p‘- 3 - - (- 2/3’)-i= , 8‘- 8 .  181-2- - - I ,  
2 -  

so that a domain, -(3’-$>y>- (-26’)-4 for example, 
is cut out at @‘= -4 and there is no continuous route 
connecting the regions corresponding to case I1 and 
case I11 without meeting any one of the above four 
lines. 

Now, we subdivide the regions with respect to the 
four lines stated above; for example, case I1 means 
/3’<-2 and y>-@-#, case 1 2  /3‘<-2 and -/3‘ 
-f>y(-2p‘)-i and so forth. This subdivision is not 
essential (there is, nevertheless, a practical advantage, 
because p’, or speaking more precisely p’* = P’/pf, de- 
pends only on the coefficients of the zonal harmonics 
for the potential and is totally independent of the 
initial condition) as a whole because cases 11, 111, and 
1111, for example, have no differences in the sense of 
continuous deformation. Therefore, it is useful to 
assemble some of the too subdivided cases into one 
case, t hen  firiaiiy we have tile foiiiowiiig divkioii : 

Case 1 which involves cases 11, II,, 1111 ; 
Case 2’ which involves cases I, 9 

Case 2” which involves cases 112, 1112; 
Case 3’ which involves cases 13, 113 t 

Case 3” which involves cases 111~; 
Case 4’ which involves cases 14, 114 ; 
Case 4’’ which involves cases 1114; 
Case 5 which involves cases IS, 115, 1115. 

Figure 1 shows the division in the p’ vs plane. 
Here for the sake of comparison, the case where p’>o 
(.i\ndo!~er’s subcases ( I ’ ,  a” ,  h’, and h”) is added. 

We evaluate ui and ( ~ 3 ) ~  in each case either by 
giving extreme values for @’ and y or by giving special 



370 S H I N K O  A O K I  

V .  

case 111 

FIG. 1 .  Division in the p‘r vs y* plane. p’*=p’/@$ and yi=y/Bl. 

numerical values as given in Sec. VII. In  any case one 
set of values for 8’ and y is enough to determine the 
sign of (g3)i and the relation of U‘O and ui (i= 1,2,3). 

As an example, case 3’ is shown where extreme values 
are given. 

Case 3’ p’= -e-*, y =  +f, E --.f +o, 
@,,$,-#+a 8 C  t 9 

512 

27 
(g3)0= 

and 
7 

(gS)Z= 
28 

where unnecessary higher-order terms are omitted. 
Therefore 

u3 < u2 < uo< u1, 

(g3)O>O, (g3)1>0, (g3)2>0, and (g3Mo. 

and 

Table I shows the results. From this table, combined 
with (4.7), it is easy to find the sign of A(u)  [e.g., in 
the case 3‘, if U I < U  then A(u)>O, if uo<u<ul or 
U Z < U < U O  then A(u)<O, and so forth]. 

V. VALUES OF p AND x 
For the purpose of giving a real expression of the 

solutions, i t  is also necessary to have the range in 
which p or x falls. As a first step, a comparison is made 
here between p(p) or p(x) and the parameters of p 
function, namely el, e2, and e3. Let 

4P%)-g2f?(Z)-g3 

then i t  is well known that if the discriminant A>O, 
the three parameters el, e2, and e3 are all real; contrary 
to this, if A<O, then only one of them, say el, is real. 

= 4Cp(z) - e11Cf?(z>- ezlCg(z)--esl, (5.1) 

Since 

f?’W= 4CP(P) - ellCB(P> - ezlCp(P>- e31, (5.2) 

&p)= - (aP+a12a~)a: is real, (3.2) 
and 

g’(p) = i ( a ~ 2 a ~ + 3 a ~ a ~ a ~ + 2 a ~ ~ )  (a()-’ is imaginary, 

TABLE I. Roots of A(u) = O  and sign of g: at respective roots. 

Case 1 
Case 2’ 
Case 2” 
Case 3’ 
Case 3’’ 
Case 4’ 
Case 4’’ 
Case 5 

+ +  + + + -  + +  + + + -  + + - +  + + + -  + + - +  - + + +  

it follows that, when A>O: 

p(p)<es or e2<g(p)<el, (5.3) 
where the three arguments are denoted such that 

e3 < e2 < el. 
Similarly, with 

p’(x)= p(p)++i(a{)fflg’(p)=P is real 

p’(x)= -@pl(a~)fp’(p)=iQ is imaginary, (4.2) 

when A>O: 

p(x)<e3 or ez<p(x)<el. (5.4) 

I n  the case when A <0, i t  follows necessarily that 

and 

Besides, from (4.2) i t  follows that 

C(P)>(@(X), if Q Z O ,  

U Z U O .  

that is to say (P’<O), (E) 



Case 1 

Case 2' 

Case 2" 

Case 3' 

Case 3" 

Case 4' 

Case 4" 

Case 5 
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which give us the sign of both values, provided that 
(ad)', or more rigorously (ao')**= (ad)+/@+, is non- 
negative without any restriction. I n  effect, since in the 
form of the solutions h and k ,  or more rigorously 

Case Range of u Values of Y and P p'(~) / i  Class' h*=h//3* and k*=k//3f, have (a()-', or more rigorously 
uo<u p<et<e2<P<el - 01 (aot)*-f=P1/2(-228')f, as a factor, the change of sign 
u=uo P=es=ez= p 0 of (ai)' as a whole does not produce any real difference 7; in the solutions at all. It is to be noted that when /3<0 ul<u<uo P<ea<ez< p < e l  + 

01 this provision means (a0-f itself, which does not 
u<ul P<p<e l  + 

uo<u P<er<e*<P<el - 

TABLE 11. The values of P =  ~ ( x )  and P= P(P) (S'<O). 

Sign of 
P'(X)/i 

and 

" - -  
p = e8 = e4 = P 
P<ea<e,< @<el  
P <  @<el 
P <  p<ea<ez<elb 
P <  p < e l b  
p < ea <e2 < P  <el 
p<P<el 
p= e)=  e2= P <el 
P<p<el  
p <ea < e1 < P < el 
g<P<el 
p= e) = e2 = P 
P <  @<el 
P <  g<er<e2<elb 
P <  g<elb 
p <ea <et < P < et 
p<P<eIe 
p< P <et <ez <ela 
p<P<el 
p = eZ=ea= P <et 
P <  p<el 
p <ea <e2 < P <el 
p<P<el 
er<ea< p<P<et 
p = ea= ez= P 
P <  p<e8<e2<elb 
P <  p<eP 
p <ea <el < P < el 
p< P <el8 
p € P <ea <e2 <ela 
g= P =  e t = e ~  
ea<e,<P< @<el 
P <  @<el 
p <ea < e2 < P < el 
g<P<el 
ca<et< p<P<el 
et=P= @ = e l  
ea<ea<P< @<el 
P<p<el 

0 + 02 + 12 + 22 + 12 
01 
11 

0 + 12 
- 01 

11 
0 + 12 + 22 + 12 
- 01 
- 11 

21 
11 

0 + 12 
- 01 
- 11 

23 
0 + 22 

12 

- 11 
- 21 
0 + 24 

12 

- 11 
- 23 
0 

24 

- 
- 

- 

- 
- 

- 

+ - 01 

+ - 01 

+ + 12 

See Table 111. 
b e1 in the lower line is the continuation of e1 in the upper line as a result 

0 e l  in the upper line is the continuation of CI in the lower line as a result 
of the dropping of e l  and ea in the upper line into imaginary values. 

of the dropping of e1 and cs in the lower line into imaginary values. 

The above is simply obtained. The next is to decide 
whether p(x) and ~ ( p )  drop either in the region 
between el and e2 or the region smaller than e3. This 
decision can be given by knowing the behavior near 
U = U O ,  where generally the situation is changed, and 
by knowing the behavior in the extreme case such as 
u + + co . The detailed calculations are omitted here, 
and only the results thus obtained are listed in Table 11. 
In  this table, for brevity, we let: 

P'dX)  and p=p(p>. (5.6) 

p' ( x ) / i =  Q = l6p' (u - uo) , (5.7) 

p' ( p ) / i =  - 16 (a()-' (U - u 0) , (5.8) 

Besides, P'(x)/ i  and p'(p)/i are determined by 

and 

. .  
mean a nondimensional quantity ( a i )  *-*, should be 
taken as negative. By this method we may ignore the 
difference of sign of /3 but may unify the procedure as 
a whole, This is justified directly from the fact that in 
the equations of motion the sign of /3 can be changed 
without any significant alternation except for the change 
of signs of h and K for the same time. 

The next step is to determine the range in which p 
or X will fall. For this purpose it is convenient to 
classify the various cases which are associated also 
with the value of u. This was done in the last column 
of Table 11. The specification of each class is given in 
Table 111. Thus we can determine the range of p and x, 
if we remember that : 

when A < 0, if 0 < v <w:', then 
- < p ( i v ) < e l ,  and p'(iv)/i<O, 

but if wI"<v< 2w:', then 
e l > g ( i v ) > -  CQ, and p'( iv) / i>O,  

(F) 

where w;'i is the purely imaginary semiperiod given by 

when el is real. 
On the other hand. when A>O. 

if 0 < v <ut', then 
\,,,/..t+~.)>~,, , ,d / . . t  I :..\/:\n 

G l A  r\w y \w T " / I  u /  u, 

- 00 < p( iv )  <e3, and @(iv) / i<O,  
but if w" < v < 2w", then 

ez< p(w'+iv) <el ,  p'(w'+iv)/i<O, 
es> p( iv )>  - 00, and @ ( i v ) / i > O ,  

where w' is the real semiperiod and wi' i  is the purely 
imaginary semiperiod given by (e3 < e2 < e l )  

(GI 

(5.10) 
dP 

and 



1 1  p < P < e l  
1 2  P <  p < e l  

2 1  b~ < P <e3 < e2 <e l  - +;, ix’ O<p’“’<w” 
22 P< p<ea<ez<e l  + ZP . i x  w”<p’<x’< 2w” 
23 ea<es< p < P < e l  - w‘+ip‘, W‘+iX’ w”<p’ <XI< 2w” 
23 e a < e l < P <  @ < e l  + w’+ip’, W‘+iX‘ 0 <P‘ <XI<W“ 

Note: Class 0 and Class 2 are corresponding to A >O. On the other hand, Class I is corresponding to A <O. 

VI. REAL EXPRESSION OF SOLUTIONS 

As seen in the preceding section, the values p and x 
are uniquely determined within the parallelogram, 
which is (2w’,2w”i) for A>O or (2~1’,~~.1’+wl’’i) for 
A<O; however, the parameters which are included in 
the expression of solutions are not p and x ,  respectively, 
but $p and $x. These values can not be uniquely 
determined in the parallelogram but correspond to the 
four values, respectively. In effect, v is uniquely 
determined by: g(v)= given constant, g‘(v) has given 
sign, then 

$u+w‘, +v+w”i, and &v+w’+w”i, for A > 0 ,  

or 
+U+Ul’, +.+a (&*’“l’’i), 

and 
+++w1’+$wl’’i, for A <O, 

are all required values as well as $v. 
This phenomenon, however, does not provide any 

essential dificulty. In effect, the change from $v to 
&.+a’ produces only a half-period advance, and this is 

canceled out by choosing the proper value for the 
additive constant A. On the other hand, the change 
from +v to 4v+w”i or to +v++(wl’+wl’’i) produces 
another series of solutions, which satisfy the equations 
of motion as well as the given energy constant u. 
Reviewing the results in advance, class 2 (which in- 
cludes classes 21-24) has two series of real solutions ; 
contrary to this, class 1 has only one series of real 
solutions while the other corresponds to imaginary 
solutions, and class 0 has no series of real solutions. 
This change can be also carried out by changing A to 
X’+w’’i or A’++(wl’+w’’i) without any alteration of 
+p and $x, respectively, as was done by Andoyer, since 
the solutions are periodic qua function of A, +p or $ x ,  
respectively, and the argument is in the form of A&$p 
&+x. Accordingly, we may fix the values for +p and +x. 
And from 

3 (p+x)=x1,  

and (6.1) 
+ ( P - x ) = x ? ,  

we may construct Table IV. 
Thus we have obtained the real expressions of the 

solutions in each class. From (3.1) the expressions of 

TABLE IV. Constants X I  and x?. 
~ _ _ _  

Class XI = +(P+X) x2 = 3 (P- x) 

01 - 1  - 2 w  I +Xl’i, fw”<Xl’<;w” --_I - 2w I +X?’i, -w” <X?’<O 

02 +w’+x,’i, fw”<”’<qw’’ &’+X?’i ,  -w” <X?’<O 

11 X l ’ i ,  O<Xl’<Wl” X ? ‘ i ,  -+wl”<X?‘<o 

12 XI%, ---W,”<Xl’<O X ” i ,  - 4WI”<X2‘<0 

2 1  X l ’ i ,  O < X l ’ < W ”  X?‘i, -$A”<x?’<O 

2 2  X l ’ i ,  w”<x1’<2w” X?’i, - fw“<xz’<O 

23 Wl‘+Xl)i, W ” < X l ’ < 2 W ”  X?’i, - +W”<XZ‘<O 

24 w’ + X l ’ i ,  O<Xl’<O” Xz’i, - +J’<X?’<O 
_____ _- 
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TABLE V. Constants included in solutions (6.8,9). X I = X I ’ ~ ,  xz=x21i. 
- ____ - ___ 

Class Specification 61’ S I 1  Go’ A XI’’ XYl’ Xl”’ X i ’ ’  

W l ”  01” < x 2 1 < 0  -1 -1 -1 +t XI’-- Wl” x2’+- WI’ l  2Xl’-;fw,” 2 X z ’ f -  Wl”  

2 2 
1 1 2  -<xl’<wl”,  -- 

2 2 2 

Wl‘l W l t ’  011’ W l ”  Wll‘ 01” 
1 2 1  -- <x1‘<0, -_ < x 2 ’ < 0  $1 +1 - 1  +t XI’+- xz’+- 2x1’+- 2x2’+- 

2 2 2 2 2 2 

W1l’ 0 1 ”  W1‘l  Wl” f&” 

1 2 2  -wl~:<Xl:< --, -- <X2l<U + I  +1 $1 0 XI’+- xi+- 2 X l ’ + t 0 1 ”  2x;+- 
2 2 2 2 2 

Note: The subdivision here is caused by the fact that  the restriction I Im(v) I <OI” would not be satisfied especially for r(2x1) in the second subclass; 
accordingly before expanding into series we have changed the argument keeping in mind the periodicity of h and k qwa function of X I .  

h and k are easily obtained : 

h= HP+!?> 

1 

where the double signs should be taken according to 
the sign of the imaginary part of v : 

upper sign for O<Im(v)<2w” 

or 

lower sign for -2w”<Im(v) <0, (6.4) 
q = exp[- ru”/w’], q= ((a’), 

w’ is the real semiperiod, and w”i is the purely imaginary 
semiperiod ; when A <0, 

When A>O, the expression of ((v) is given by 2r 9 1 ”  nr +-,c--- sin- (v =l=:3wl’ =F$w1”i), (6.5) 
q v  ri 2 r  a~ qn nr 

w’ 2w’ w’ n=l 1 - q 2 n  u’ where the double sign should be taken according to the 

w1 l -qP  w1’ 

{(v) = -=F-+- c - sin-(vTw”i), (6.3) 

TABLE VI. Constants included in solutions (6.10, 11). 
._ -~ 

Class Specification 61 SI  A XL“ XZlf XI”’ X i ”  -___  ~- ~ - - 
+1 0 x1‘--w“ x*”” 2X1‘--W“ 2x2’+0”  

+ 1  0 XI’ X?! 2x1’-0” 2X?’+W” 

+1 +t XI’---W” XZ”” 2X1’--3W“ , 2xz‘+w‘ } =: +1 --: x1’-2w” XZ‘ 2X1’--3W”, 2x2’+0”  

I 
221 i 
::: { 2 

X I =  x,?, o ” < x 1 ’ < 2 0 ”  

0” 

2 
2 2 2  xz= x2‘i, --<x2’<0 

xl=w’+xl‘i, W ” < X ~ ’ < ~ W ‘ ’  (- 1)“ (- 1)“ +$ Xi’-W” X,’+W’’ 2 X i ‘ - h ” ,  2Xz”W” 

( -1 )n  (-1)n -$  X1’-22w“ XI’ 2Xlf-3W“, 2Xz’fW’’  

2 x 2 + w I 

( -1)n  (-1)n 0 XI’ X l l  2x,’--w1‘ 2xz’+0” 

0” 
x2= Xz‘i, -- < x 2 ’ < 0  

x;=w‘+xl‘l, O < X l ‘ < W “  ( - -1)n (-1p 0 XI‘”” X,’+W“ 2x1’--0” 

x 2 =  X?’i, --<x2’<0 
0‘’ 

2 
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t +20 

I ~ I G .  2. Characteristics in it* and k* plane, h*= h / @ + ,  k * = K / @ i .  
@*’=-3 .O ,  y*=+2.0. (Case I,, or case 1.) 

sign of the imaginary part of v :  

upper sign for O<Im(v) <wl” 
or 

ql= exp[ (u~+wl”i /2wl’ )s i ]  

lower sign for -ul”<Im(v)<O, (6.6) 

(=iq2,  q 2  being a real positive value), 

1 1 =  s” (w1’). 

k. 
+ I  0 

and wl”i is purely imaginary semiperiod. [Note: w1’ 
and +(wl’+w1‘’i) form a system of the fundamental 
semiperiod.] 

All the necessary preparations have been completed 
and we are now ready to construct the real expressions 

1-20 

FIG. 4. @’*= -3.0, yt=O.O. (Case Is, or case 3’.) 

of the solutions in the following: (p’<O) 

A<O (Class 1) 

I hz- -[ E’ -{ C,’ cos-((7+x)+c‘,o’ 
1 7 r  q Z f L  12s 

(- 2/3’)+ w1’ 1 + 92” W l l  

where 

c - *o  

FIG. 3. @r=-3.0 .y*=+l.O. (Case 1 2 ,  or case 2’.) 
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‘.\. 

/ 

I 
-1 n ’\ 

,.’ 

/- 

The coefficients are expressed by 

,/‘ 

\. 
q=exp [ -~ y,”] , T = ~  1 S p  fJzao-’I2t. 

I +:.a k* 

%. 
\. 
\ 

nxxltt n7rXZtt 
S,’= sl’ sinh-- sinh-, 

w 1) w1’ 

two subclasses corresponds to this phenomenon. The 
second subclasses are constructed by making X = X’+”’i 

n7rX1“ n7rXZ” 
S,”= sinh--- sinh-, 

w I! w I’ 

I n  - . “  

C’ iiieaiis the suiiiniation extending only over positive 1 ’ , i 3 ”  

odd numbers, and C” only over positive even numbers. 

-2 n 

(6.9) 

I h* 

i 
FIG. 6.  b’*= -3.0, y*= -4.0. (Case Is, or case 5 . )  

omitted in the following.) 

1 i T  
h=- - 

(- 2 p y  w’ 

37.5 

where 
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FIG. 8. b’*= -1.0, y*=0.0. (Case II,, or case 2”.) 

The coefficients are expressed by 
nuX1” nrx,” 

Cn=cl sinh-+sinh-, 
0’ 0’ 

nrX1” nr&” 

0’ W 1  

nrX1”’ n7rX2”’ 
C,a = - 4 sinh-- $ sinh-. 

W’ 0’ 

The coefficients and arguments involved in the above 
expressions are given in Table VI. These constants are 

Sn=si COSh--coSh-, (6.11) 

I 

FIG. 9. @’e= - 1.0, y + =  -0.6. (Case 112, or case 3’.) 

chosen such that all the expansions should be con- 
vergent, or in other words, the restriction imposed on 
(6.3) is always satisfied. If this would not be satisfied, 
before being expanded into series the argument has 
been changed keeping in mind the periodicity of h and k 
qua function of x l .  

It seems necessary to add the dimensionality of W, 

XI,  XZ, etc. They are all expressed in the following way : 
~ * = w @ f ,  and so forth. 

VII. CHARACTERISTICS 

Some numerical calculations connected with the 
characteristics are given here. The characteristics means 
the orbit without any regard to the independent variable 
7 but only the plotted line in h and K space. In  this 
problem it is easy to obtain such a characteristic. In 
effect, 

P+u=o (7.1) 

h 

FIG. 10. p’* = - 1.0, y~ = - 1.0. (Case 114, or case 4’.) 

gives one; or, in more detail 

(hZ+k2)’+ (y+p’)h*+ ( ? - p ’ ) k 2 - @ h + ~ = 0 .  (7.2) 

The same procedure of the nondimensional analysis 
taken in Sec. V gives the following form (omitting the 
subscript *) : 

(h2+K2)’+ (y+B’)h2+ (y-B’)k?- h+u=O, (7.2’) 

from which we have simply 

kz= - (h2+$(y-@’))  
f [ - 2@’h2+ h - .u+ a (y --@’)2]*. (7.3) 

Accordingly, by putting 

u1= - 2@’hZ+h+ (y -@’)Z, 
and (7.4) 

u*= -h4- (-y-B’)hZ+h, 
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As an example, one set of @’ and y for each (11,. . . ,1115) 

the following criteria are given : 
(i) if u> U , ,  then 0 solution for k ;  

($1 if u<U1, h2++(y--Pf)>0, 
(ii)ll and u> Up, then 0 solution, 
(ii)12 or u<U2, then 2 solutions; 
($2 if u<U1,  h2++(y-B’)<0, 
(ii)21 and u> U2, then 4 solutions, 
(ii)22 or u< Up, then 2 solutions. 

The critical values for u also come from 
criteria as follows : 

@= O.147X 10-“aG-:’, p4=0.0528~0-’, 

(7.8) 
p‘= -0.36Ox 10-3~~4 ,  

I 

--IO 

t - 2 0  

I these 

t. -1.0 

I 
(7.5) FIG. 12. p’*= -0.25, y*= +2.0. (Case 1111, or case 1.) 

(7.6) therefore, 

p*’=/3‘/’/33= -0.129 
(7.9) y*= -71.7a02a--1.99, 

h*= 18.9a&= 18.9a0e sing-0.0201 
k*= 18.9a&= 18.9aoe cosg, 

where a0 stands for the mean semimajor axis, e for the 
eccentricity, and g for the argument of perigee. 

It is noted that in the case of the earth the asym- 
metrical part comes mainly from Js,  but not from J 3 .  
The linear shift term (61”) which depends only on J 3  
in our theory is small. It is also noted that @e’ is not 
dependent on the mean semimajor axis a0 but only on 
J,’s; therefore, if the potential is given, it is an absolute 
constant. 

In concluding this section, we should add some 
remarks on the critical value UO. As is seen from Table 
VII ,  the critical value uo corresponds neither to a stable 
point nor to an unstable one except for case 5 ,  where 
of course it corresponds to the unstable points. The 
sign of (gr)o is positive for cases 1-4. Therefore, it might 
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FIG. 14. 6'. = -0.25, y* = - 1.3. (Case III,, or case 3".) 

be considered that uo corresponds to a stable point. I n  
fact, however, it corresponds to imaginary equilibrium 
points. Or in other words, if we draw the characteristics 
corresponding to uo it is split into two circles given by 

7 1  1 
&+[h*F+ (- 2P')t-J = --f- - (7.10) 

2 2 (-2@')4' 

and for case 5 two circles meet a t  two points so that 
the two points become unstable points; on the other 
hand, for cases 1-4 they cannot meet each other or the 
radii (us) of one or both circle (s) become (s) imaginary. 

F;. 

I 
FIG. 15. p'*=-O.25, y*= -1.5. (Case 1114, or case 4".) 

VIII. DISCUSSIONS 

1. As mentioned before in Sec. VI the expansions of 
solutions are so arranged that they are always con- 
vergent. But it is still a problem to find out the most 
efficient expansions for the solutions ; in other words, 
to rearrange the series when it is too slowly convergent. 
This situation will occur when q tends to unity. In  
such a case we have another type of expansion by 
exchanging the real period and imaginary period with 
each other, so that for the extreme case of q = l  we 
have hyperbolic functions instead of circular functions. 

In  any case, in order to have suitable expansions of 
the solutions it is necessary to rearrange them into a 
different form appropriate to each case, respectively. 

Also neglected is a proper method to calculate semi- 
periods (u', ~ " i ,  ull, or ui'i) in terms of given constants 

I h. 

k. 

L - 2 0  

FIG. 16. @'e= -0.25, y*= -3.0. (Case 1115, or case 5.) 

@', y and u. These calculations are closely related with 
the evaluation of q (if A>O) or 91 (if A<O). The 
numerical processes to find p and x are also omitted here. 

These practical problems are, of course, important 
if we wish to obtain the solutions in detail but they are 
so complicated that their discussion will be postponed. 

2. The adoption of nondimensional analysis in units 
of the proper powers of @ is, of course, optional. We 
can treat the calculation without any nondimensional 
analysis; or we may have another type of nondimen- 
sional analysis in terms of @' or y for example. However, 
the process which we treated in this paper has a slight 
advantage; firstly, in doing so @'a is an absolute con- 
stant depending only on the coefficients of harmonics 
but independent of the initial condition ; secondly, we 
may treat both the cases @'>O or @'<O, in the same 
framework, for example, we can draw a diagram such 
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TABLE VII. Critical values of u* and corresponding h+ and k,.. 

Subcase 71 i u*i h*i k*i Remark 

Case I B*’= -3.0 
+2.0 0 

1 

+ l . O  0 
1 
2 
3 

0.0 1 
0 
2 
3 

-2.0 1 
2 
0 
3 

-4.0 1 
2 
0 
3 

+2.0 0 
1 

0.0 1 
0 

-0.6 1 
0 
2 
3 

-1.0 1 
2 
0 
3 

-2.0 1 
2 
0 
3 

+ 6.2083 * e *  + 1.0548 t0.8847 
+ 3.9583 - 0 .  + 2.0562 $1.1072 + 0.0734 -0.8376 
- 0.1295 -0,2696 

+ 3.5139 +1.3008 + 2.2083 + 1.0702 -1.1309 
- 0.0840 -0.1699 

+ 7.8553 +1.6290 + 4.6947 -1.5286 + 0.2083 . - *  
- 0.0500 -0.1004 

+14.1383 +1.9056 
+10.3976 -1.8340 + 0.2083 -0.0833 
- 0.0358 -0.0715 

Case11 p*=-l.O 

+ 0.2148 +0.3855 
+ 2.1250 * * -  

+ 1.0548 $0.8847 + 0.1250 * * e  

+ 1.6022 +1.0221 
- 0.0850 ... 
- 0.1524 -0.6396 
- 0.1698 -0.3823 

+ 2.0562 +1.1072 + 0.0734 -0.8376 
- 0.1250 9 . -  

- 0.1295 -0.2696 

+ 3.5139 +1.3008 . + i.0702 -1.1309 + 0.1250 -0.2500 
- 0.0840 -0.1699 

... 
0.0 

0.0 
0.0 
0.0 

0.0 

0.0 
0.0 

0.0 
0.0 

0.0 

0.0 
0.0 

f0.7022 
0.0 

... 

... 

... 

... 
0.0 

0.0 

0.0 

0.0 
0.0 

0.0 
0.0 

0.0 

0.0 
0.0 

-10.6614 
0.0 

... 

... 

... 

stable 

stable 
stable 
unstable 

stable 

stable 
unstable 

stable 
stable 

unstable 

stable 
stable 
unstable 
stable 

stable 

stable 

stable 

stable 
unstable 

stable 
stable 

unstable 

stable 
stable 
unstable 
stable 

I O”O 

+0.05 

L - 0 0 5  

FIG. 17. 6‘*=-0.13, p=+3 .0 .  (Case El, or case 1.) 
(Figures 17-21 correspond to the case for the earth.) 

as Fig. 1 on a single sheet; thirdly, the difference 
between P>O and /3<0 can be neglected automatically 
by always selecting the sign of (p’jt or (-P’)* such 

Subcase Y I  i u*i h*i kri Remark 
- __ 

1111 

1112 

111, 

III, 

111s 

E1 

Ez 

Ea 

E4 

Es 

f 3 . 0  0 
1 

0.0 1 
0 

-1.3 1 
2 
3 
0 

-1.5 1 
2 
0 
3 

-3.0 1 
2 
0 
3 

f 3 . 0  0 
1 

0.0 1 
0 

-1.5 1 
2 
3 
0 

-3.0 1 
2 
0 
3 

-8.0 1 
2 
0 
3 

Case 111 &‘=-0.25 
+ 0.7656 * * a  + 0.1371 +0.2645 

+ 0.5825 $0.6959 
- 0.4844 a * .  

+ 1.5506 +1.0111 
- 0.1717 -0.5966 
- 0.1777 -0.4145 
- 0.2244 ... 
f 1.7641 +i.0546 
- 0.0815 -0.7296 
- 0.1094 ... 
- 0.1512 -0.3249 

+ 3.9518 +1.3457 + 1.4070 -1.1895 + 1.3906 -1.oooO 
- 0.0775 -0.1562 

Case E @*’= -0.13 

+ 0.0863 $0.1707 

+ 0.5269 +0.6643 
- 0.9573 ... 
+ 1.6337 $1.0286 
- 0.1397 -0.6608 
- 0.1655 -0.3679 
- 0.4923 * * e  

+ 1.4877 

+ 3.7379 +1.3243 + 1.2412 -1.1618 + 1.0977 ... 
- 0.0806 -0.1625 

+18.5553 +2.0463 
+14.5236 -1.9847 
+14.5227 -1.9231 
- 0.0302 -0.0611 

... 
0.0 stable 

0.0 stable 

0.0 stable 
0.0 unstable 
0.0 stable 

0.0 stable 
0.0 unstable 

0.0 stable 

0.0 stable 
0.0 stable 

410.6124 unstable 
0.0 stable 

... 

0.0 stable 

0.0 stable 

0.0 stable 
0.0 unstable 
0.0 stable . . .  

0.0 stable 
0.0 unstable 

0.0 stable 

0.0 stable 
0.0 stable 

f0.4865 unstable 
0.0 stable 

... 

that (P’*)*, ( -p’* ) i>O.  This is caused by the fact that 
the difference between B>O and /3 < O  remains only on 
the sign of h and K but there is no difference on the 
nature of the critical character, etc. 

aahl =aie ring 

I To’a 

d,,k; 

4 ° C  corg 

L 0 0 5  

FIG. 18. B’*= -0.13, - p = O . O .  (Case Ez, or case 2”J 
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FIG. 19. ,9':=-0.13, y:= -1.5. (Case Ea, or case 3".) 

3. We have assumed J ,  to be of nth order of magni- 
tude. But if those assumptions are broken down, how 
shall the situation change? We may consider this 
breakdown as follows within our framework: @ + 0, in 
other words a noneffective case of the antisymmetrical 
terms J3 and J S  @'a+ a). I n  this case, the range ha 
and k* for the critical nature (the transition from 
librational to revolutional) is not restricted in a limited 
area according as y* + - w , but It and k themselves 
are limited. Therefore we may let p + 0 without any 
essential difficulty in our theory. 

On the other hand if p' + 0, keeping /3 constant the 
range of h* and k* as well as h and k themselves for the 
critical nature are not restricted as y* + - m. There- 
fore, another type of theory would be required which 

L I l l / ,  

FIG. 20. ,9'*=-0.13, TI= -3.0. (Case E,, or case 4".) 

could treat not only the small eccentricity case but 
also the moderate eccentricity case. In  this case where 
the antisymmetrical terms prevail over the sym- 
metrical terms, the general feature, which is constructed 
here by adding the antisymmetrical terms to the 
symmetrical terms or a t  most by considering the same 
order contributions in some meaning from both sources, 
would be broken down. Fortunately, since p*' for the 
earth is approximately -0.13, it  does not seem to 
necessitate any new theory in this respect. 
4. A higher-order theory beyond the one discussed 

here could be developed along the line which we gave 
in a previous paper (1962). However we must keep in 
mind the restriction made there that the leading terms 
which are, for example, the ones discussed here, should 
prevail over the remaining terms. In  other words, if the 
leading terms are so small that the neglected terms 

FIG. 21. ,9'*=-0.13, y*=-8.0. (Case E5, or case 5.) 

play an important role in the behavior of the solution, 
then such an approximation process would be broken 
down. In  addition, in the present paper, we have taken 
into account two parameters such as p and p', the 
former is assumed to be third order and the latter is of 
second order ; namely the nondimensional quantity 
p'*=@'/pf is assumed to be far from zero or from 
infinity. 

In  the previous paper, it is assumed that, for example, 
J23, J2J4 and Jg are all of the third order of J2+J4/J2; 
this means that, if JZ+J~/JZ tends to zero, JZ3  etc. 
should tend to zero as well, in order to be able to 
apply the general treatment described there, otherwise 
the leading terms are so small that the series obtained 
along the theory would be divergent. A similar situation 
occurs in the present theory in subsection 3 .  This is 
also true in the case of the higher-order theories here 
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discussed. At any rate it is important to consider first 
the most significant parts of the terms. 

The difference between the previous theory and the 
present one consists of the fact that here the anti- 
symmetrical terms are given the same importance as 
the symmetrical terms by assuming that J ,  is of the 
nth order of magnitude in the case of small eccentricity. 

IX. CONCLUSION 

I n  this paper we tried to solve the equations of 
motion of a close satellite near the critical inclination 
in the case of small eccentricity under the influence of 
the potential given by 

Assumed are as follows: the coefficient of zonal har- 
monics J ,  is of the nth order of magnitude, the eccen- 
tricity is of the first order, and a= 1-5aZ/L2 is of the 
2nd order. The terms which are taken in the Hamil- 
tonian are of the sixth order of magnitude in this re- 
spect; namely, the terms which have &Jz, 8J4, 8J3, 
eJ2J3,  eJs etc. as factor are included. It is also noted that 
the lower order terms do not enter the Hamiltonian 
except for unnecessary constant terms. 

In  Sec. VI the explicit solutions are given with 
classification according to the interrelation of @’a, y+ 
and u+ [for the definition of these quantities, see 
Eqs. (4.4), (2.12) and (3.4)], where 0’. strictly depends 
on the coefficients of zonal harmonics J,, y* depends on 
the projected angular momentum to the equatorial 
plane as well, and u+ is the energy constant in units of 
0’. This classification is made in order to have real 

expressions for the solutions. Three parameters involved 
are expressed by the nondimensional quantities so that 
one may have the actual solutions by factoring a 
proper power of Df, which is assumed as of the first 
order of magnitude. 

For the earth 8, is +0.0528/ao; accordingly, if the 
eccentricity is confined within some range, say 0.05 or 
0.10, then the theory developed here is applicable. 

In any case it is noted that the transition from the 
symmetrical term prevailing case to the antisymmetrical 
preilailing case within the approximation adopted here 
occurs a t  (between case I1 and case 111, where a great 
change especially in characteristics occurs) : 

@‘*=a’/@%= -1 2 ’  

This quantity for the earth is approximately -0.13; 
therefore, the earth’s potential is in the anti- 
sJmmetrica1 term prevailing case in this respect. 
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